
Encoding Formula

Ally Macdonald

October 29, 2021

1

1 APOs

To recap, an anonymous piecewise object extends the definition of a piecewise
object.

Namely, for a piecewise object φ,

φ? =

{
φ φ is defined

? φ is not defined

This has infinitely many formulations, and on its own, does not restrict any
of them. On its own, this is a mildly meaningless definition except for when
dealing with (i.e. manipulating) the notation directly such as in polynomial
interpolation. Instead, we can define several more objects to make this more
readable.

Let µ be a solution to φ?, that is, an object that satisfies φ?:

µ =

{
φ φ is defined

? φ is not defined

Therefore, we can write:

φ? = µ+

{
0 φ is defined

? φ is not defined

And define the latter anonymous piecewise object to be the decider, [φ]
alongside some arbitrary object r. Hence:

φ? = µ+ [φ] · r

The decider object, by its very nature, has a superposition property built-in.
The above form is simple/single form, whereas we could alternatively write in
extended form φ? as:

φ? = µ+
∑
n

([φ]n · rn)

Again, on its own this formula is virtually meaningless. However, once the
form of the piecewise objects are determined, the formulation becomes more
heavily restricted, as will be shown below.

1.1 A Note on Univariate Polynomial Interpolation

Polynomial interpolation is one of the ideas the APO framework was built
around (this is not the only purpose of the existence of APOs, however). Mostly,
standard interpolation talks about the lowest degree polynomial that satisfies
an arbitrary number of points given (parametrically or otherwise).

Instead, we can derive the lowest degree polynomial using our standard
APO/piecewise techniques; for example, p(x). Then, we can write all polyno-
mials that satisfy these points as:

P (x) = p(x) + [p(x)]r(x)

2

Where [p(x)] are the roots of all points given. If points {(xi, yi) | i ∈ I} are
given, then this would be formulated as:

[p(x)] =
∏
i∈I

(x− xi)

And r(x) is any arbitrary polynomial. r(x) = 0 gives, trivially, the lowest
degree polynomial, P (x). Notice that deg [p(x)] = |I| and deg p(x) = |I| − 1
and hence if r(x) is nonzero then degP (x) ≥ |I|.

Moreover, while APOs cannot themselves rigourously prove that this gives
all polynomials, both the fundamental theorem of algebra and factor theorem
show that P (x) gives all polynomials that satisfy these points.

By the factor theorem, [p(x)] divides P (x)− p(x); P (x)− p(x) = k(x)[p(x)]
for some k(x). And since for all P (x) there exists an k(x) = r(x), we can write
P (x) = p(x) + [p(x)]r(x).

2 The Encoding Formula

The encoding formula, as shown below,

φ? = µ1 +

n−1∑
k=1

(µk+1 − µk)tk

for objects µ1, µ2, . . . , µn and arbitrary objects t1, t2, . . . , tn−1, can be derived
using the definition of an anonymous piecewise object while attempting to en-
code multiple objects, functions or otherwise, into the same object. In other
words, instead of fixing the decider object, we’ll attempt to solve for the condi-
tions under which each of the objects above all satisfy φ?.

Namely, we take the extended form of an APO:

φ? = µ+

n−1∑
k=1

[φ]ktk

And let µk and µk+1 for all k ∈ {1, 2, . . . , n − 1} be solutions (or objects
which satisfy φ?) such that:

φ? = µk +

n−1∑
k=1

[φ]krk (1)

φ? = µk+1 +

n−1∑
k=1

[φ]ksk (2)

Subtracting (1)− (2) gives:

µk+1 − µk =

n−1∑
k=1

[φ]k(rk − sk)

=

{
0 φ is defined

? φ is not defined

:= [φ]k

3

From here, we have our new decider objects definitions as chosen (this is
not the only choice that can be made here; for example, one could let [φ]k =
µk+1 − µ1). Since µ1 satisfies φ? we can finally write:

φ? = µ1 +

n−1∑
k=1

(µk+1 − µk)tk

This particular choice of formulation for ‘the’ encoding formula (although it’s
inaccurate to say ‘the’ encoding formula since there are infinitely many choices
for it) results in a nice telescoping pattern emerging.

Let m < n ∈ Z+ be a constant such that:

tk =

{
1 k ≤ m
0 k > m

Then φ? in fact telescopes to φ? = µm+1. Furthermore, our φ? object now
takes the form, parameterised with m above:

φ? =

µ1 m = 0

µ2 m = 1
...

...

µn m = n− 1

? ?

2.1 Vector Lines

Suppose we want to derive a parametric vector line equation; we let µk = ~vk for
k ∈ {1, 2}.

Then we parameterise φ? = ~r(t) (by t ∈ R) such that we get the vector line
equation:

~r(t) = ~v1 + (~v2 − ~v1)t

By the encoding formula. We also notice that this takes the form of:

~r(t) =

~v1 t = 0

~v2 t = 1

? ?

Using our standard APO/piecewise techniques, this isn’t terribly difficult to
derive by hand.

2.2 Vector Planes

Unlike the previous example, a parametric vector line, a parametric vector plane
is far more difficult to derive using standard techniques used so far. So instead,
given that a plane can be given by 3 vectors that span the plane, we let µk = ~vk
for k ∈ {1, 2, 3}.

4

Then, we parameterise φ? = ~r(u, v) (by (u, v) ∈ R2) such that we get the
vector plane equation:

~r(u, v) = ~v1 + (~v2 − ~v1)u+ (~v3 − ~v2)v

This has the piecewise form:

~r(u, v) =

~v1 (u, v) = (0, 0)

~v2 (u, v) = (1, 0)

~v3 (u, v) = (1, 1)

? ?

2.3 Telescoping Property

A few of the derivations as below are a direct result of the telescoping property of
the encoding formula; that is, when tk = 1 for all k, the encoding formula reduces
to a single term. This is not unique, in fact, the derivations as given below are
moderately standard but are motivated in a different way. Realistically, the
form

φ? = µ1 +

n−1∑
k=1

(µk+1 − µk)rk

does not contain a telescoping property of sorts, but relies on rk = 1 for some
k ∈ {1, 2, . . . , n− 1} and rk = 0 everywhere else.

With this being said, however, similar formulas can still be derived using
varying approaches. This demonstrates the flexibility of our encoding formula(s)
and the importance of such. And so while our standard form presents itself in
such a way we can reduce generally to:

n−1∑
k=1

µk+1 − µk = µn − µ1

2.4 Geometric Series (Finite)

The closed forms for both finite and infinite geometric series are standard results
in calculus, but what if we could derive them without calculus or writing out the
series by hand? In fact, the approach we’ll use is to encode each term/function,
µ1, µ2, . . . , µn+1 = a, ar, . . . , arn so that we have:

φ?(r) = a+

n∑
k=0

(ark+1 − ark)tk

We then notice the following facts:

� φ?(r) = arn+1 ⇐⇒ tk = 1 by the telescoping property of the encoding
formula.

� ark+1 − ark = (r − 1)ark

5

Using the latter fact, we can factor out the term (r − 1), and so we write:

arn+1 = a+ (r − 1)

n∑
k=0

ark

Solving for the sum, we get that:

n∑
k=0

ark =
arn+1 − a
r − 1

In practice this almost seems tautological. Out of our formulation, we’ve
already noticed that arn+1 is the telescoping of all encoded functions, the mono-
mials, and so the corresponding sum should telescope too. This also means we
can go backwards too; that is, the geometric sum can be used to generate the
original telescoping sum.

2.5 Geometric Series (Infinite)

The infinite geometric series derivation is incredibly similar to the finite geo-
metric series’; instead, however, we’ll let n→∞. Recall that µ1, µ2, . . . , µn+1 =
a, ar, . . . , arn, and that:

� φ?(r) = arn+1 ⇐⇒ tk = 1 by the telescoping property.

� arn+1 converges to 0 if and only if −1 < r ≤ 1.

� ark+1 − ark = (r − 1)ark.

Using these facts, we’ll write that:

0 = a+

∞∑
k=0

(r − 1)ark

Notice that for r = 1 the sum converges. However, factoring r− 1 out of the
sum will only work if the resultant sum itself converges, which only occurs for
|r| < 1. Hence:

0 = a+ (r − 1)

∞∑
k=0

ark

And solving for the series;

∞∑
k=0

ark =
a

1− r

2.6 Recurrence Relations (Standard)

Suppose we want to solve for a specific sum or series:

n∑
k=1

f(k)

6

Using our (telescoping; rk = 1) encoding formula, we know that the summand
is equal to µk+1−µk, which we’ll call F (k+1)−F (k). We also know, therefore,
that µ1 = F (1) := F1. Hence, in order to solve for the sum, we have to find
some function F (k) such that for all k ∈ [1, 2, . . . , n+ 1] we have:

F (k + 1)− F (k) = f(k)

F (1) = F1

Thus we write:

φ?(n) = F1 +

n∑
k=1

f(k)

And solving for the sum, using φ?(n) = F (n+ 1),

n∑
k=1

f(k) = F (n+ 1)− F (1)

If you’re familiar with the discrete/finite calculus, this is the equivalent of
the discrete fundamental theorem of calculus. Interesting that this pops up
here, but realistically, what our encoding formula (in the language of discrete
calculus) ends up being is:

φ? = µ1 +

n−1∑
k=1

(tk ·∆µk)

With this being said, most of the time it makes far more sense to try to find
a sum indirectly, namely using a different formulation of µk that can be factored
or otherwise manipulated. This is despite showing off the connection between
encoding multiple objects into one and the discrete/finite calculus.

On a more fundamental and relevant level, this means what we’re doing
is encoding the function F (n) in a single object for different discrete values;
F (1), F (2), . . . , F (n+ 1). This is in essence multivariate interpolation, though,
in order for telescoping to take effect, we set each of our ‘parameters’ to be
1. Furthermore, F has to be defined in terms of f and so we also reduce this
to a recursion problem that, on the surface seems tautological, but yields a
formulation of a given sum as shown above.

2.7 Cosine Sum in Arithmetic Progression

Inspiration/reference: How can we sum up sin and cos series when the angles are
in arithmetic progression? It’s here we take inspiration from the trigonometric
identity:

sin(a)− sin(b) = 2 cos

(
a+ b

2

)
sin

(
a− b

2

)
Briefly, this can be derived using trigonometric identities sin(p+ q) and

sin(p− q), using the substitution a = p+ q and b = p− q.
In order to come up with a closed form for this sum, we know for our

lower/upper bounds to be 0 and n respectively, we let k ∈ {0, 1, . . . , n + 1}

7

https://math.stackexchange.com/questions/17966/how-can-we-sum-up-sin-and-cos-series-when-the-angles-are-in-arithmetic-pro
https://math.stackexchange.com/questions/17966/how-can-we-sum-up-sin-and-cos-series-when-the-angles-are-in-arithmetic-pro

and µk(x) = sin(x+ dk) for some d. Furthermore, to be able to manipulate the
series, we let tk(x) = 1 in our encoding formula. Therefore:

φ?(x) = sin(x) +

n∑
k=0

(sin(x+ kd+ d)− sin(x+ kd))

Noting that φ?(x) denotes the n+1th case in this instance, we have φ?(x) =
sin(x+ d(n+ 1)). Furthermore, we apply our trigonometric identity to the sum
and factor out, giving us:

sin(x+ d(n+ 1)) = sin(x) + 2 sin

(
d

2

) n∑
k=0

cos

(
x+ kd+

d

2

)
Letting x 7→ x− d

2 , and rearranging, we arrive at:

n∑
k=0

cos(x+ dk) =
1

2
csc

(
d

2

)(
sin

(
x+

(2n+ 1)d

2

)
− sin

(
x− d

2

))
Applying the same identity as before,

n∑
k=0

cos(x+ dk) =
cos
(
x+ nd

2

)
sin
(

(n+1)d
2

)
sin
(
d
2

)
2.8 Sine Sum in Arithmetic Progression

This derivation is quite similar to the previous, but we instead rely on the
trigonometric identity (which can be derived nearly identically)

cos(a)− cos(b) = −2 sin

(
a+ b

2

)
sin

(
a− b

2

)
Again, to set up our closed form, we know for our bounds to be 0 and n, we

let k ∈ {0, 1, . . . , n+ 1} for µk = cos(x+ dk), for some d. To finalise setup, we
allow tk(x) = 1 for all k in the encoding formula, such that we have:

φ?(x) = cos(x) +

n∑
k=0

(cos(x+ kd+ d)− cos(x+ kd))

Again φ?(x) represents the n + 1th case and so φ?(x) = cos(x+ (n+ 1)d).
Applying the identity and again factoring, we have:

cos(x+ d(n+ 1)) = cos(x)− 2 sin

(
d

2

) n∑
k=0

sin

(
x+ kd+

d

2

)
Rearranging for the sum, and letting x 7→ x− d

2 , we have:

n∑
k=0

sin(x+ kd) =
1

2
csc

(
d

2

)(
cos

(
x− d

2

)
− cos

(
x+

(2n+ 1)d

2

))
Rewriting using our identity as above;

n∑
k=0

sin(x+ kd) =
sin
(
x+ nd

2

)
sin
(

(n+1)d
2

)
sin
(
d
2

)
8

2.9 Maclaurin Series

For the sake of this section, we’ll assume convergence happens nicely and that
we can, in fact, take the Maclaurin series of a function.

The idea of encoding µ1, µ2, . . . , µn = 1, x, . . . , xn as n → ∞ gives us a
(factored) polynomial series in general:

φ?(x) = 1 + (x− 1)

∞∑
k=0

tk(x)xk

For some parameters tk. Up until now, we’ve abused the telescoping property
for when tk = 1. But what if, instead, we pick some alternative tk(x); namely:

tk(x) =
f (k)(x)

k!

For some function f(x). Then,

φ?(x) = 1 + (x− 1)

∞∑
k=0

f (k)(x)

k!
xk

We notice immediately that this is the Maclaurin series of f(x) provided
that it converges;

φ?(x) = 1 + (x− 1)f(x)

This is helpful because one might be able to, instead of picking f(x), pick
φ?(x) and work backwards, thereby encoding a different set of µ in order to get
a desired φ?(x).

Interestingly, if we have φ?(x) = 0 then f(x) = 1
1−x . Equivalently, if we

have the coefficients of the Maclaurin series equal to 1, then for n ∈ Z+ ∪ {0}
f (n)(x) = n!; this gives the series for 1

1−x also since xn → 0 as n→∞ when it
converges (hence equivalence).

2.10 Deparameterising and Gluing

When using the encoding formula in the context of encoding functions, i.e. we
have a set of functions µ1(x), µ2(x), . . . , µn(x) we’re left with a set of parameters
that also can be dependent on x, namely, t1(x), t2(x), . . . , tn−1(x) such that:

φ?(x) = µ1(x) +

n−1∑
k=1

(µk+1(x)− µk(x))tk(x)

The only is now, though, that we have the extra set of parameters that we’re
left to deal with. Turns out, what if we choose these terms to be dependent on
the value of x itself somehow?

We know already that our standard form is designed to telescope based
on when tk(x) = 1. Another notation we’re familiar with does the same thing:
Iverson brackets, which are defined in this context as follows, for some statement
S(x):

[S(x)] =

{
1 S(x)

0 ¬S(x)

9

Namely, Iverson brackets behave in the way we want when we describe
tk(x) = [x ≥ xk]: for x1 ≤ x2 ≤ · · · ≤ xn−1 we have that for x ≥ xk, ti(x) = 1
for i ∈ {1, 2, . . . , k} and so the telescoping effect occurs.

Thus, we’re left with the following gluing formula:

φ?(x) = µ1(x) +

n−1∑
k=1

(µk+1(x)− µk(x))[x ≥ xk]

This is only one gluing formula; for example, one can instead opt to go
backwards with [x ≤ xk].

Furthermore φ?(x) is continuous iff µk(x) is continuous for all k, and that
µk+1(xk) = µk(xk). This continuity property allows us to simplify our expres-
sion:

(µk+1(x)− µk(x))[x ≥ xk] =

{
µk+1(x)− µk(x) x ≥ xk
0 x ≤ xk

=

{
µk+1(x)− µk(x) x ≥ xk
µk+1(xk)− µk(xk) x ≤ xk

= µk+1

({
x x ≥ xk
xk x ≤ xk

)
− µk

({
x x ≥ xk
xk x ≤ xk

)
= µk+1(max(x, xk))− µk(max(x, xk))

And therefore, for continuous φ?(x) we have:

φ?(x) = µ1(x) +

n−1∑
k=1

(µk+1(max(x, xk))− µk(max(x, xk)))

In general, though, rather than relying on this formula, it’s better to create
it when attempting to derive another thing. The reason being that there may
be a far simpler formulation for what you’re trying to achieve.

2.11 Functions and Relations in R2

Suppose that we have some relations µ1(x, y) = 0, µ2(x, y) = 0, . . . , µn(x, y) = 0
and, like in each other example, we wish to encode these somehow in a way that
is also a relation; φ?(x, y) = 0.

The quick and simple way is to plug these straight into the encoding formula,
but if we do this, we lose parameterisation of a function. For consistency and
functional purposes, this is not beneficial. So instead, we also add the zero
function in “front” of µ1(x, y). This way, we have:

φ?(x, y) = µ1(x, y)t1(x, y) +

n−1∑
k=1

(µk+1(x, y)− µk(x, y))tk(x, y) = 0

From here, it’s absolutely not necessary to deparameterise. However, there
are a few main ideas I’d go through:

� All relations at once

10

� One relation at a time using a single variable

What we mean by “all relations at once” is we mean to say that we construct
a 3 dimensional surface, z = φ?(x, y), for which z = 0 yields the given relations.
It turns out there already exists a formulation for this known as the null factor
law; µ1(x, y)µ2(x, y) . . . µn(x, y) = 0. In terms of our formulation, this is fairly
easy to represent:

t1(x, y) = t2(x, y) = · · · = tn−1(x, y) =

n−1∏
k=1

µk(x, y)

Which gives:

φ?(x, y) = t1(x, y)

[
µ1(x, y) +

n−1∑
k=1

(µk+1(x, y)− µk(x, y))

]
= 0

By the telescoping property and the representation as above, we subse-
quently get:

φ?(x) =

n∏
k=1

µk(x, y) = 0

The latter idea, representing a single function/relation at a time using a
single variable, is far more difficult. Reparameterising µk(x, y) = µk(t) for
t ∈ R, we let:

(t1, t2 . . . , tn−1)(t) =

(1, 0, 0, 0, . . . , 0) t = 0

(1, 1, 0, 0, . . . , 0) t = 1

(1, 1, 1, 0, . . . , 0) t = 2
...

...

(1, 1, 1, 1, . . . , 1) t = n− 2

? ?

An easy-to-observe solution to this problem is:

(t1, t2, . . . , tn−1)(t) = ([t ≥ 0], [t ≥ 1], . . . , [t ≥ n− 1])

Which again makes use of the Iverson bracket notation. However, it renders
the solution non-elementary and inherently piecewise-defined (as well as non-
smooth). The alternative, of course, is viewing the problem as an interpolation
problem and interpolating in any which way is desired to suit the requirements
at the time.

11

	APOs
	A Note on Univariate Polynomial Interpolation

	The Encoding Formula
	Vector Lines
	Vector Planes
	Telescoping Property
	Geometric Series (Finite)
	Geometric Series (Infinite)
	Recurrence Relations (Standard)
	Cosine Sum in Arithmetic Progression
	Sine Sum in Arithmetic Progression
	Maclaurin Series
	Deparameterising and Gluing
	Functions and Relations in R2

